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Horizontal subsurface cracks in an elastic—plastic material are analysed using finite-element

techniques. The sliding surface is modelled as a rigid cylinder. The effect of such parameters

as the friction between the cylinder and the material being indented, the elastic and plastic

modulus of the material and the depth of crack location on the J-integral values at the left

and right tips of a horizontal subsurface crack is considered. The prospective crack

propagation direction is taken as the direction along which the J integral assumes a

maximum as the indenter slides along the material surface. The left and right tip cracks were

found likely to propagate at about 10° to the horizontal. This propagation direction was

found to depend strongly on the location of the crack. Both crack tips are expected to

propagate closer to the vertical direction as the depth of crack location is reduced. Also,

horizontal cracks closer to the surface are found to have higher J integral values. While

friction between the slider and the specimen did not affect the crack propagation direction,

the crack-tip plasticity reduced the propagation direction, with respect to the horizontal.
1. Introduction
Understanding the material parameters contributing
to the wear of polymers and polymer-based com-
posites is of particular importance. These materials
are being increasingly used as replacements for metal
parts subject to sliding wear, in applications as diverse
as machinery [1], dental prostheses [2] and ortho-
paedic prostheses [3]. Polymers are rather unique in
that their material properties exhibit a great range
depending on external conditions, particularly tem-
perature. The strain rate also plays a role in determin-
ing material response [4]. It is therefore often not clear
when linear elastic fracture mechanics (LEFM) may
safely be used to describe crack propagation in
polymers.

Much work has been done since the pioneering
work of Suh [5] and Fleming and Suh [6] in attempt-
ing to relate the mechanisms of delamination and
crack propagation to wear rates. Fracture mechanics
have since been used to elucidate the problem of
delamination theory of wear. Notable studies follow-
ing that of Suh are those of Rosenfield [7] and Hills
and Ashelby [8]. Keer et al. [9] have presented nu-
merical results for a cracked surface loaded by
Hertzian contact stresses. Ghosn [10] has analysed
vertical surface crack propagation in a rotating inner
raceway of a high-speed roller bearing using the
boundary integral method. He has attempted to pre-
dict the crack growth direction of a vertical surface

crack under rolling sliding contact. Recently,

0022—2461 ( 1997 Chapman & Hall
Salehizadeh and Saka [11] have calculated the stress
intensity factors for short straight and branched
subsurface cracks, subject to Hertzian loading, using
the finite-element method. Their results were consis-
tent with the earlier work of Fleming and Suh [6] in
emphasizing the importance of mode II in crack
propagation

Caution has to be exercised in using linear elastic
fracture mechanics to understand these wear mecha-
nisms. As pointed out by Rosenfield [12], when the
crack tip is very close to a free surface, even usually
brittle materials act as though they are tough. This led
him to conclude that the formation of wear debris by
growth of subsurface cracks is either J controlled or
strength controlled. Also, as mentioned by Sin and
Suh [13], a major shortcoming of some earlier contri-
butions is the use of LEFM, even when the actual
plastic zone adjacent to the crack tip is large and
extends to the nearest free surface. When LEFM are
used to predict the rate of crack propagation under
cyclic loading, two conditions need to be satisfied.
Firstly, the change, *K, in stress intensity factor
should be larger than a critical value called the thre-
shold value, *K

5)
. Secondly, the plastic zone size

ahead of the crack tip is small compared with the
dimensions of the crack or the distance of the crack tip
from the nearest free surface.

Three criteria, namely, maximum hoop stress [14],
minimum strain energy density [15], and maximum

shear stress, are commonly used in predicting crack
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propagation directions under single- or mixed-mode
loading. The minimum-energy-density criterion, how-
ever, cannot be applied with confidence unless the
plastic stress components are proportional to the cor-
responding elastic stress components, as these are
based on elastic solutions. Also, these criteria cannot
be used to explain crack propagation when cracks are
under compressive and shear loading. Recently,
Tikare and Choi [16] have tried to correlate the crack
propagation direction of monolithic ceramics with the
ratio of mode I to mode II stress intensity.

In the case of subsurface horizontal cracks, Suh
proposed that the maximum-shear-stress criterion can
be used to find the crack propagation direction. His
proposal was based on the experimental findings of
Jahanmir et al. [17], who showed firstly that subsur-
face cracks propagate parallel to the surface for a con-
siderable distance before they change the direction
and secondly that slip planes are shown to line up
parallel to the surface in sliding wear. Fatigue experi-
ments on steel samples under pure mode II loading
conditions by Otsuka et al. [18, 19] indicate that at
low values of mode II stress intensity factors the crack
growth was along the direction of maximum shear
stress, which happens to be in the direction of the
crack line. At high mode II stress intensity factors the
cracks branched at $70° from the crack line. These
angles correspond to the directions of maximum ten-
sile hoop stress at the crack tip.

In sliding wear, several aspects of crack propagation
need to be considered. Specifically these are, firstly the
location of the moving load with respect to the crack
tip, secondly the prospective crack propagation direc-
tion, and thirdly such factors as crack depth, crack
face friction and crack geometry.

In the present study, a finite-element model is used
to study horizontal subsurface cracks as a preliminary
step to proposing a predictive wear model. The pur-
pose is to simulate the cusp of an opposing tooth
sliding over a restorative material surface during
chewing. As a first approximation, the restorative ma-
terial surface is assumed to be smooth, and the oppos-
ing cusp is modelled as a cylinder with radius R,
allowing a simpler two-dimensional plane strain
model to be employed. The interest is specifically in
a polymer material, such as an epoxy-type thermoset.

Our scope here is rather modest. The results of
previous work by Sadeghipour et al. [20] on static
microindentation (specifically material modelling and
the location and formation of different cracks) have
been used for a sliding cylinder, when a subsurface
horizontal crack exists. The effect of neighbouring
subsurface cracks is ignored. It is the purpose of this
study to use this simple model to predict the crack
propagation direction of such cracks using the J-inte-
gral approach.

2. Theoretical background
The basic principles derived from static indentation
fracture theory are still useful for understanding crack
initiation and propagation in wear testing, even

though the existence of a crack and the motion of the
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indenter sliding on the material surface affects the
stress distribution patterns.

The constitutive model for the specimen material is
based on a series of experimental microindentation
tests reported in our previous publication [20].
Material response was simplified to be similar to
a bilinear elastic—plastic von Mises material. As an
indenter contacts the surface, the applied load is dis-
tributed over the contact site as compressive stresses.
Elastic deformation of the material, both at and
around the contact site, gives rise to tensile stresses
confined to a shallow ‘‘skin’’ outside this region and
compressive stresses immediately below. The combi-
nation of tensile and compressive stresses causes the
formation of ring, median and radial cracks when
spherical indenters were considered [20].

During the initial penetration, the stress field is
usually described by three components: stresses radi-
ating from the point of contact (radial stresses),
stresses which encircle the contact (hoop stressed), and
shear stresses. It is the behaviour of these stresses in
the immediate vicinity of the contact (the so-called
‘‘near-field’’ stresses) which determine the point of
initiation of indentation-induced cracks. Stresses at
points far removed from the contact (the ‘‘far-field’’
stresses) also determine the path of propagation of the
same cracks. All analyses were performed using the
existing package ADINA 6.1 [21]. ADINA was
chosen because of its capabilities of plastic analysis,
contact mechanics analysis and fracture mechanics
analysis.

In previous studies, the stress intensity factors, K
I
,

K
II

and K
III

, were usually chosen to describe the frac-
ture behaviour in elastic fields. It is indeed the use of
the stress intensity factor as the characterizing para-
meter for crack extension that is a fundamental prin-
ciple of LEFM. However, the elastic distribution in
the vicinity of a crack tip causes a stress singularity at
the crack tip; thus the elastic solution is not uncondi-
tionally applicable.

The J integral is a generally accepted parameter to
describe fracture behaviour in an elastic—plastic field.
It is defined as
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where ! is the line contour enclosing the crack tip, x
i
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are the components of
the stress tensor, u
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(per unit volume). For linear elastic materials, J is
related to the stress intensity factors as
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where E@"E in plane stress and E@"E/(1!l2) in
plane strain.

In the present investigation, the ‘‘line contour’’
method is used to determine the cylinder location

when crack initiation could occur [21]. This method is



used in a two-dimensional analysis to calculate the
J integral, a contour-independent parameter charac-
terizing the severity of the displacement, and the stress
and strain field at the tip of the crack. When used in
conjunction with finite-element models, the line con-
tour is defined by a series of adjoining segments
passing through the elements located on the contour.
The integration of the J integral along each segment is
performed numerically using the value of the variables
at the integration points which define the segment.

According to the principles of fracture mechanics,
all stress systems in the vicinity of a crack tip may be
derived from three modes of loading, i.e., opening
mode, sliding mode and tearing mode. The line con-
tour method can reflect a realistic composition of
those three modes because it is not necessary to verify
a virtual displacement of a domain around the crack
tip against a virtual extension method.

In contrast, the ‘‘virtual crack extension’’ method
can only be used to determine the possible crack
propagation direction. In this method, a small domain
around a crack tip and its virtual possible extension
direction must be specified a priori. This virtual exten-
sion direction is not always true during cylinder slid-
ing from one side of the crack to the other, but it is
true when the cylinder reaches a location at which the
J integral has a maximum value. In other words, when
a cylinder slides on a specimen surface, different po-
tential crack propagation directions exist depending
on the cylinder location. Further, there is a most likely
crack propagation direction for each cylinder loca-
tion. Therefore, this method can be used to evaluate
the J integral of a given body with pre-existing cracks.

The total potential energy variation is calculated
using a ‘‘virtual material shift’’ obtained by shifting the
nodes of a domain which includes at least one of the
crack’s front nodes. The equivalence between the J in-
tegral and the ratio of the total potential energy vari-
ation to the crack area increase holds only for linear
elastic and elastic—plastic analyses when the deforma-
tion theory of plasticity is applicable.

The equation for the energy release rate is expressed
as
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where v is the volume of the cracked body, s is the
surface of the cracked body, *x

k
are the components

of virtual crack extension vector, A
c
is the increase in

crack area, d
ij

is the Kronecker delta, f
i

are the
components of the body force vector, t

i
are the compo-

nents of the surface tension vector and ¼":
e
ij

0
r
ij

de
ij

is the total stress work density.

3. Finite-element model
The schematic diagram of the model is shown in
Fig. 1. The finite-element model is made up of eight-

node isoparametric plane-strain quadratic elements
Figure 1 Schematic diagram of horizontal subsurface crack loading
and boundary conditions.

Figure 2 Elastic and elastic—plastic material properties (Poisson’s
ratio, l"0.2).

capable of handling very large displacements with
elasto-plastic properties (Fig. 2). The cylinder is as-
sumed to be rigid and no body and/or inertia forces
are included. During this isothermal process, the load-
ing was considered to be monotonic and proportional,
and the material properties were considered to be
homogeneous. For the purpose of generality, the
finite-element analysis was considered to be dimen-
sionless, but there is no reason in principle why it
cannot be related to our experimental studies.

As mentioned above, the constitutive model for the
specimen material was based on a series of experi-
mental microindentation tests which were reported in

our previous publication [20]. Material response was
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Figure 4 The range of crack propagation angles for different crack

Figure 3 Graph of J integral versus left tip crack propagation
angle, h, under different elastic moduli. (n), E"1; (h), E"3.

simplified to be similar to a bilinear elastic—plastic
von Mises material.

4. Results and discussion
In sliding wear, several aspects of crack propagation
are of interest:

1. where the sliding load is located when the sub-
surface crack starts to propagate;

2. which direction the crack should take;
3. how the crack’s behaviour is affected by factors

such as its depth, friction coefficient and crack ge-
ometry.

In our analysis we attempt to answer many of these
issues.

Fig. 3 shows the variation in the J integral around
the left crack tip with crack propagation angle, h, for
two different values of the elastic modulus E (E"1
and E"3). In the light of the theory proposed in our
earlier paper [22], the left tip of this horizontal crack
tends to grow in a direction of 170°, which is at an
angle of 10° with respect to the horizontal (Fig. 4). As
seen in Fig. 3, the elastic modulus of the material does
not have any effect on the crack propagation angle.
A similar variation of the J integral for the right tip is
shown in Fig. 5. Again, the elastic modulus of the
material does not affect the crack propagation direc-
tion, which is at 10° to the horizontal. The variation in
the J integral values for the left and right horizontal
crack tips indicates a propensity for the crack to
propagate when the cylinder is sufficiently close to the
crack tip.

Including friction between the indenter and the slid-
ing surface does not seem to affect the prospective
crack propagation direction for both the left and the
depths.
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Figure 7 Graph of J integral versus right tip crack propagation
angle, h, under different contact friction coefficients. (n), l"0.18;

Figure 6 Graph of J integral versus left tip crack propagation
angle, h, under different contact friction coefficients. (n), l"0.18;
(h), l"0.

Figure 5 Graph of J integral versus right tip crack propagation
angle, h, under different elastic moduli. (n), E"1; (h), E"3.

right crack tips, as illustrated in Figs 6 and 7. The
crack propagation directions for both crack tips are
the same as shown in Fig. 4. This near-horizontal
crack propagation direction is suggestive of a very
high ratio of shear to normal stress. This is expected,
as the crack is embedded in a compressive stress field
and normal tensile stresses assisting the crack to open
in mode I are absent. This behaviour is similar to the
behaviour of a ductile sample subject to pure shear.

As mentioned earlier, the horizontal crack was
modeled as a diamond-shaped crack with different
height-to-width ratios, H/¼. As indicated in Fig. 8,
(h), l"0.



Figure 8 Graph of J integral versus left tip crack propagation
angle, h, under different crack geometric configurations. (n),
H/¼"0.1; (h), H/¼"1.

Figure 9 Graph of J integral versus left tip crack propagation
angle, h, under different crack tip depths. (n), 0.2R; (*), 0.1R; (s),
0.05R; (£), 0.03R; (h), 0.02R.

increasing the height of the crack tends to increase
the J integral values. This is suggestive of an increase
in deformation in the vicinity of the left crack tip.
However, H/¼ does not seem to affect the right
crack tip field. The reason for this difference is not
apparent.

An increase in the depth of crack location tends to
decrease the left crack tip propagation direction. The
angle of propagation for the left crack tip varies from
10° to 80° with respect to the horizontal as the loca-
tion of the horizontal subsurface crack is decreased
from 20% R to 2% R. The values for the right tip
crack are the same as seen in Figs 9 and 10. This range
of crack propagation angles is shown in Fig. 4. The
lower values of the crack propagation angle are sug-
gestive of pure shear. However, when the crack is
located closer to the surface, the presence of a tensile
stress field close to the contact area is probably re-
sponsible for the increase in crack propagation angle.
Apart from a change in the crack propagation direc-
tion with depth of the crack, the tendency for crack
propagation increases for cracks closer to the surface.
This is evident from the sharp rise in the J integral
values as the depth of crack is reduced from 20% R to
2% R.

The variation in the mode I and II stress intensity

factors with any angle is represented in the following
Figure 10 Graph of J integral versus right tip crack propagation
angle, h, under different crack tip depths. (n), 0.2R; (*), 0.1R;
(s), 0.05R; (h), 0.02R.

equations. The stress intensity factors along any angle,
b, measured from the crack central line are given by

K
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I
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b
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These equations are obtained by assuming that the
horizontal subsurface crack forms an infinitesimal
kink at an angle h from the crack plane [23]. The
energy release rate, G, is thus a function of the crack
propagation angle. For elastic materials, or materials
with a low plastic-zone-to-crack-size ratio, this elastic
energy release rate equals the J-integral value. Thus,
the crack propagation direction would depend on the
ratio of K

I
to K

II
. The above reasoning is mentioned

only to justify the dependence of the J-integral values
on the crack propagation angle. It needs to be empha-
sized that the values of these crack propagation direc-
tions obtained from these equations are different from
those determined in the present study. This is prob-
ably on account of crack-tip plasticity which is not
accounted for in Equations 4a and b, obtained using
LEFM.

One other important factor that needs to be con-
sidered in attempting to compare the calculated crack
propagation angles in the present study with experi-
ment is the effect of crack-tip plasticity. This is illus-
trated in Fig. 11. Of particular interest in this figure is
the sharp change in the predicted crack propagation
direction of a material that has a plastic modulus of
0.25E compared with the pure elastic case. Also, the
tendency of the crack to grow equally in directions
symmetrical with respect to the crack plane increases
with increase in plastic deformation.

In conclusion, the current study attempts to predict
the crack propagation direction of a horizontal crack
subjected to combined mode I and II loading. Also,
the effect of crack-tip plasticity is accounted for in this
analysis as the J-integral values are used as a measure

of the crack propagation tendency.
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Figure 11 Graph of J integral versus left tip crack propagation
angle, h, under different plasticity ratios. (h), E

5
"0; (*), E

5
"0.25.

5. Conclusions
J-integral values were used to estimate the crack
propagation angle at the left and right tips of a hori-
zontal subsurface crack. Based on this study, cracks
closer to the surface have a tendency to propagate
towards the vertical. As the location of the crack
below the surface is increased, the cracks tend to
propagate closer to the horizontal. This suggests that
mode II type of loading dominates with increasing
depth. Also, the J-integral values increase as the depth
of crack location is decreased. Including friction be-
tween the indenter and the sliding surface does not
affect the crack propagation direction. Introduction of
crack-tip plasticity reduces the crack propagation
angle of the left tip to 5° with respect to the horizontal.
There was no change in crack propagation direction
for the right tip.

The J-integral application has the advantage that it
considers both modes (I and II) of crack propagation.
Also, as J-integral values are used, the effect of crack
tip plasticity is accounted for. Pin-on-disc experiments
on polymeric restorative materials are currently being

done to induce fatigue crack propagation in these
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materials. These will allow verification of predicted
crack propagation directions.
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